导航菜单

军队院校数字图像处理课程的教学优化改革

孔韦韦1,雷 阳2,李小曼1

(1. 武警工程大学 信息工程系,陕西 西安 710086;2. 武警工程大学 电子技术系,陕西 西安 710086)

摘 要:针对数字图像处理课程基础理论抽象、实用性强的特点,分析和探讨该课程教学中存在的若干问题及原因,从师资力量建设、课程标准制定、教学方法与设计、考核方法4个方面阐述数字图像处理课程的教学优化改革方案。

教育期刊网 http://www.jyqkw.com
关键词 :数字图像处理;教学优化改革;师资力量;课程标准

基金项目:全军学位与研究生教育研讨会研究课题“军队院校研究生教育中的导师与研究生关系研究”(YJZX14C14)。

第一作者简介:孔韦韦,男,讲师,研究方向为图像处理,kwwking@163.com。

0 引 言

数字图像处理[1-2]是信息处理领域的重要分支,通过该课程我们可以完成图像的几何变换、算术处理、图像增强、图像复原、图像重建、图像编码、模式识别、图像理解等多个方面的工作。目前,随着计算机软硬件处理能力的不断提升,数字图像处理技术已被广泛应用于医学检测、反恐处突、弹道导弹精确制导等多个军(民)用领域。由于该门课程的特殊地位和广泛应用,国内外几乎所有信息类专业都开设了该课程,许多专家、学者也针对课程的教学方式提出了自己的观点[3-8]。

军队院校作为高等院校中的一类特殊群体,无论在课程设置还是人才培养需求上均与地方高等院校有很大的不同。军队院校自身的特殊属性要求培养出的人才不仅要有扎实的理论基础和科研能力,还能运用这些知识对作战以及日常训练中出现的问题加以解决,因此,军队院校对人才的理论与实践结合能力提出了更高也更为严格的要求。

武警部队负责维护国家安全和社会稳定,有效打击国内外各种恐怖势力,保障人民安居乐业。当前,世界各国都将“反恐”作为维护国家稳定和保卫人民生命财产安全的一项重要任务。反恐图像目标的识别和监视能力更体现了一个国家的反恐技术力量和能力水平,其关键在于反恐图像目标的识别。因此,有效地将数字图像处理技术应用于反恐处突领域,不仅有助于提升针对恐怖势力的打击力度,还可以有效减少伤亡,最大限度地保障国家和人民的生命财产安全。

1 数字图像处理课程的特点

数字图像处理课程主要有以下几个特点:①理论基础要求高,涉及高等数学、信号与信息系统、信息论、计算机编码等多个领域的知识;②数字图像处理课程覆盖的内容广泛,知识点繁杂零碎;③新兴理论的不断出现要求广大学者能够敏锐把握数字图像处理技术的发展前沿;④数字图像处理技术的应用领域不断拓展,处理方法也更为复杂。

2 军队院校数字图像处理课程教学中存在的问题

2.1 课程设置不灵活

相比地方高等院校,军队院校的课程设置自由度十分受限,具体体现为课程的教学内容、学时安排、课堂组织形式甚至是开课时间均有严格的规定和限制,不能根据学生理论基础和学习能力的实际情况做自适应的调整。

尽管研究生有自己的导师和研究方向,且很多研究生日后学位论文的研究方向可能与数字图像处理领域并无关联,然而,由于许多信息类专业院校的研究生培养方案均严格限定该课程为学位必修课,导致一些研究生为了学分和学位只得选择一门与自己研究领域完全无关的课程,无形中造成了教学资源的浪费。

2.2 课时少内容多

数字图像处理课程是国内外几乎所有信息类专业的必修课。地方高等院校通常会开设50个学时,而军队院校大多只开设40学时,有的学校甚至只将其作为学位选修课开设20学时。众所周知,该课程涉及的教学内容非常繁杂且对相关课程的理论基础提出了较高要求,这类课程即使安排50学时也很难将重点内容讲授完毕,军队院校课程课时不足无疑对该课程的教学质量造成重大影响。

2.3 教学形式单一

军队院校的特殊属性在一定程度上约束了课堂多种教学形式的存在与发展,传统的教师主体式教学法是主流。这种过于单一和机械的教学形式将对研究生的学习积极性造成不利影响。另外,军队中上下等级关系往往扼杀了研究生质疑教师的勇气和可能,使研究生不敢对教师的见解有所质疑,不敢擅自踏入教师未首肯的领域中积极主动地发现问题、分析问题和解决问题,导致研究生的学习完全处于被动境地。

3 教学优化改革

3.1 师资力量建设

数字图像处理课程专业性强、理论难度大,涉及的基础学科门类较多,因此,在条件允许的情况下应尽可能安排科研方向或理论研究方向属于图像处理领域的教师担任任课老师。一方面,长期从事该领域的教师对课程的基本内容和理论了如指掌,基本功非常扎实,授课更为流畅、自然;另一方面,教材中介绍的只是图像处理领域的基础理论和经典模型,长期从事该领域研究的老师在研究过程中往往对课程中的概念及理论模型有更深刻的理解,在授课过程中必然会附带介绍本人在该领域内的研究现状和最新进展,有利于开阔研究生视野,激发学习兴趣,提高授课质量。

3.2 课程标准的制定

结合军队院校课时不足的教学实际以及人才培养类型的定位需求,我们完全有必要重新制定数字图像处理课程的教学标准,在保证理论系统性完整的基础上,侧重实践能力以及解决实际问题能力的培养和提升。具体措施如下:①教学对象精确定位,扭转以往研究生课程频频出现的“被选课”现象,切实保障“选修权”,允许研究生按照自己学位论文的研究需求选课;②由于学时有限,在制定课程标准时必须全面分析和研究教学内容,梳理与课程内容相关的知识目标、技能目标和素质目标,适当地删减一些非重点内容,重新划分各章节的学时;③数字图像处理虽然是一门理论性很强的课程,但学习的最终目的还是应用,因此,在制定课程标准时必须为研究生学员留有一定的实践操作以及课堂研讨课时;④要反映部队特色,在授课过程中重点介绍能够直接应用于部队实际的模型和方法,譬如模式识别、图像理解版块,并要求研究生动手实践;⑤紧跟发展前沿,保持知识的先进性,充分利用网络资源,以完善的学习资料、丰富的课程资源、真实的实践环境作为课程的基础和支撑。

3.3 教学方法与设计

结合课程标准,我们拟将整个教学过程分解为4个阶段:①基本理论讲授;②专题讨论;③专题讲座;④实践操作。

3.3.1 基本理论讲授

教师对教学内容中的基本理论加以讲解,旨在为研究生扫清基本理论障碍。该部分的讲解并非只是对课本内容的简单复制和重申,而是在介绍基本理论的基础上,对基本概念中涉及的各层次知识点和潜在疑问加以梳理和阐释,为下一阶段的专题讨论做铺垫。该阶段以教师讲授为主体,采取案例式教学和启发式教学相结合的授课方式。

3.3.2 专题讨论

所谓专题讨论,就是基于教师先前讲授的某一个或某一类基本理论,探讨具体应用效果以及可能影响最终图像处理效果的若干因素。这一环节将彻底打破经典教学模式中的“教师主体”模式,转变为“教师确定讨论范围—研究生为讨论主体—教师最后总结”的模式。在整个过程中,教师和研究生的角色完全转换,由研究生基于自身掌握的知识充分发挥自己的想象,针对若干问题展开探讨或者辩论。譬如,教师在探讨前先介绍图像去噪理论的相关知识,包括噪声产生的原理、噪声的种类、噪声在图像中的表现、几类经典图像去噪方法等,上述部分内容讲授完毕后确定3个问题,即均值去噪和中值去噪方法的原理有何不同?各自的优缺点何在?各自在去噪过程中可能影响最终效果的因素有哪些?下一次课教师可安排专题讨论,并将研究生在讨论中的表现作为课程成绩的一项重要依据。

在该门课程课代表的组织下,研究生被分成若干小组,大家利用课余时间分别对两种去噪方法展开了深入研究,并通过Matlab软件仿真验证,记录诸如峰值信噪比PSNR等相关指标值,初步得出可能会影响最终去噪效果的若干因素;几位同学针对一些不太一致的观点展开激烈的讨论;最后,由教师进行内容总结和答疑解惑,一些研究生还对教师的某些结论提出质疑。

专题讨论完毕后,教师和研究生普遍感觉以往枯燥又不合时宜的教学方法得到了彻底改变,研究生内心的求知热情得到了极大的激发。此外,整个专题讨论过程也锻炼了他们的逻辑思维,为了说服“对手”,他们必须要找到支撑自己观点的科学依据,包括权威论坛上的答疑解惑以及仿真软件仿真出来的实际结果等。有了这些证据后,他们还要对数据进行分析研究、组织语言、理清思路,而在以往的教学模式下,研究生并不会主动花费时间查找资料,教师由于课时的关系也不可能对每一种理论都进行仿真演示。

3.3.3 专题讲座

担任数字图像处理课程任务的教师必须从事图像处理领域研究,因此,在教学过程中,适时安排1~2次专题讲座,由任课教师将自己在本领域的研究成果或是研究体会以讲座的形式向研究生进行报告。在讲座过程中,教师将从一个较高的层次,把一些新的内容介绍给研究生,同研究生一起分享图像处理领域最新的发展动态和研究成果,开拓研究生的视野,为研究生动态更新最新的前沿知识。另一方面,由于课程标准制定过程中教学对象已实现了精确定位,凡是选修数字图像处理课程的研究生日后均要从事该领域的研究,因此专题讲座的开展也在一定程度上为研究生日后的学位论文撰写提供灵感和研究方向。显然,专题讲座是课程教学强大而又有益的补充。

3.3.4 实践操作

由教师从教学内容中选取若干重难点且与部队作战(训练)密切关联的内容,交由研究生自行仿真实现,记录主客观评价指标数值,对仿真结果进行比较与分析,并得出结论;对仿真结果中的不足展开讨论,给出可能的解决方案。显然,该阶段侧重课程标准中“反映部队特色”的宗旨,要求学员学以致用,切实将书本中的理论知识运用到部队实际中,为部队服务,提高作战能力,体现军队院校“向部队靠拢,向实战靠拢”的办学宗旨。

在实际操作中,为了贴合武警部队反恐处突场景的作战实际,教师为学生布置了模式识别版块中的图像融合仿真实验,给出了国际TNO组织提供的联合国营地源图像,源图像取自同一场景,一幅由灰度可见光图像传感器获得,另一幅由红外图像传感器获得。该实践场景十分类似于武警部队对潜藏在树林中的恐怖分子进行围捕的场景,要求研究生对现行资料中融合效果较好的6种融合方法进行仿真,记录仿真结果并加以分析讨论。

通过这一阶段的训练,研究生将书本中的理论知识与实际应用进行了有机结合,取得了良好的效果,并为日后将相应方法应用于部队作战(训练)提供了理论基础和支持。

3.4 考核方法

课程考核采取百分制,并综合考虑研究生在笔试、专题讨论、实践操作3个环节中的表现,3者的比例为0.30:0.35:0.35。在考核中,教师更看重研究生在该门课程中针对实际问题的分析能力和实践动手能力,以期学生真正理解和消化书本中的理论知识。笔试采取开卷方式进行,侧重考核研究生对该门课程中的基本理论、概念、公式的掌握情况,因此,同以往的纯闭卷考试相比,该考核方法灵活度更高,考核效果也更理想。在最终考核中,由于采取了更为有效的考核方式,学生只要认真参与教学活动,必然可以顺利通过考试并拿到高分。如今,两年的教学改革已经使该课程在研究生中小有名气,从往日学员们的“黑名单”课程转而成为“热销品牌”。

4 结 语

两年的实践结果表明,相比传统的授课方式,该改革方案更符合高等院校的教学规律和实际情况,尤其是将部队的实战需求充分融入课程标准的制定过程,更加贴近了当前军队院校的人才培养需求,充分体现了军队院校“向部队靠拢,向实战靠拢”的办学宗旨。

教育期刊网 http://www.jyqkw.com
参考文献:

[1] 冈萨雷斯. 数字图像处理[M]. 北京: 电子工业出版社, 2014.

[2] 贾永红. 数字图像处理[M]. 武汉: 武汉大学出版社, 2010.

[3] 杨淑莹, 张桦.“数字图像处理”理论与实践相结合教学模式[J]. 计算机教育, 2009(24): 84-86.

[4] 周海芳.“数字图像处理”课程研讨式教学[J]. 计算机教育, 2010(24): 93-97.

[5] 周耿烈, 鲁逢兰. 图像处理技术精品课程建设[J]. 计算机教育, 2010(18): 101-104.

[6] 何楚, 冯倩, 杨芳, 等. 数字图像处理课程实验教学过程设计[J]. 计算机教育, 2011(18): 74-77.

[7] 沈晓晶, 王艳, 赵慧娟. 应用型院校数字图像处理本科教学探索[J]. 计算机教育, 2012(1): 86-88.

[8] 黄朝兵, 杨杰, 李庆, 等. 图像处理教学与科研共建模式研究[J]. 计算机教育, 2014(8): 48-50.

(编辑:孙怡铭)

下载文本