殷晓敏1 金婕1 孙玲1,2
(1.南通大学江苏省专用集成电路设计重点实验室,江苏 南通 226019;2.中国科学院计算技术研究所计算机体系结构国家重点实验室,中国 北京 100190))
【摘要】专用短程通信协议(DSRC)为实现对车辆的实时、动态和智能化管理提供了技术规范,是智能交通系统(ITS)的核心技术之一。本文基于基带信号产生和信道仿真仪器N5106A、矢量信号发生器E4438C和信号分析仪N9020A等Angilent测试仪模拟真实环境因素,讨论了面向DSRC通信的信道模拟和测试平台,结果表明在类似的信道作用下,信号接收质量存在一定的随机性,在帧结构的保护时隙范围之内,可以通过均衡消除延时的影响。为ITS系统的设计提供了参考。
教育期刊网 http://www.jyqkw.com
关键词 智能交通;交通专用短程通信;信道仿真
基金项目:南通大学自然科学项目(13Z021)。
作者简介:殷晓敏(1984—),女,汉族,南通大学,助理研究员,主要研究方向射频微波测试。
金婕(1978—),女,汉族,南通大学,助理研究员,主要研究方向为通信算法与数字集成电路设计。
孙玲(1976—),女,汉族,南通大学,副教授,主要研究方向为射频集成电路设计与测试技术。
0引言
近年来,智能运输系统(ITS:Intelligent Transportation System)已成为世界交通运输领域发展的重要方向和前沿研究课题[1-2]。ITS系统的核心技术之一就是适用于交通领域车路信息交换的短程通信(DSRC:Dedicated Short Range Communications)系统[3-4]。自2007年以来,国际标准化组织陆续发布了面向ITS应用的车用电子无线通信标准体系[5-7],在IEEE802.11a的基础上形成针对车载通信特殊环境的IEEE802.11p标准[8]。
由于在高速移动的车载环境下,车车(VTV:Vehicle-to-Vehicle)通信信道是非静止信道,因此,DSRC通信信道不仅具有传统蜂窝系统的特点,更具有其特殊性。针对交通专用短程通信系统特点,建立准确的信道模型对于系统仿真来说是十分重要的。本文基于Agilent N5106A基带信号发生器与信道仿真器,搭建了面向DSRC通信信道的测试平台。
1DSRC系统概述
DSRC是ITS系统一种高效的无线通信机制,目前主要应用于ITS中的不停车收费(ETC)和道路口的车辆信息采集。相比于Wi-Fi、WiMAX等无线通信技术,DSRC在数据传输速率、延迟时间、通信距离和移动性等特性方面有比较折衷的考虑,并且具有支持双向传输、点对点、点对多点通信等特点,表1给出了DSRC技术与它们的特性比较[9-10]。
用于DSRC技术的频率资源共有75 MHz,划分成7个10 MHz的信道,如图1所示。其中,中间的信道用于控制信道,发送广播消息或者控制信令;第一个信道分别用于碰撞避免、车间通信等;最后一个信道用于长距离、大功率的通信;频率最低的5MHz作安全空白,剩下的4个信道为服务信道。由图可见,802.11p的物理层的工作在5.8~5.9GHz附近,还保留了用于服务的信道;相邻的两个信道通过协商后可以当作一个20 MHz的信道使用,但其通信的优先级别要低些。使用10 MHz较小的带宽,一方面是为了增加在车载环境下对多径传播的抗衰弱能力,减少了多普勒的散射效应,另一方面增加的警戒间隔也减少了多路径传输所造成的码间干扰。
2信道特性仿真
通信系统的信号传输质量与信道的性能密切相关,与光纤等有线信道相比,无线信道处于开放的电磁环境中,更容易受到衰落、干扰、噪声等多种因素的影响。而DSRC通信信道除了具有一般无线信道的特征外,还存在快速移动等特有情况。典型的DSRC通信有路车通信(R2V)和车车通信(V2V) 两种方式。R2V是指车辆和路边设备进行通信,属于移动设备和固定设备的通信过程。V2V是指车辆和车辆之间进行通信,属于移动设备之间的通信。充分掌握DSRC系统无线信道的特征,可以为提出改善系统通信质量的技术方案提供参考,从而保证R2V和V2V通信的可靠性。
2.1仿真测试平台结构
基于Agilent N5106A基带信号发生器与信道仿真器搭建的面向DSRC通信信道的仿真测试系统如图2所示。N5106A具有120MHz的调制带宽,能够模拟各种通信信道。本仪器配备了8路实时衰落仿真器,支持的信道衰落类型包括Rayleigh、Pure Doppler、Rician、Suzuki等,多普勒功率谱频谱形状有classical 3db,classical 6db,flat,rounded,jake classical和jake rounded。由图2可见,该系统还包括了一台矢量信号发生器E4438C和一台信号分析仪N9020A,E4438C和N5106A之间的控制信号通过LAN口连接,数据信号通过数据总线(Digital Bus)传输。
测试系统如图2所示。首先使用Agilent的N7617B Signal Studio软件生成符合IEEE 802.11p协议的理想基带信号数据文件,该数据文件经过N5106A产生基带信号,并通过信道模拟器得到包含信道特性的基带信号。N5106A产生的信号通过Digital Bus输入信号发生器E4438C,由该仪器将基带信号调制到5.9GHz的载波上,经过射频输出端输出到信号分析仪N9020A进行分析。
2.2仿真测试实例
DSRC系统信道模型如表2所示。图3至图6给出了不同信道条件下信号的测试结果。其中,图3为信号通过白噪声信道后产生的星座图,其中EVM(误差向量幅度)为-27.62dB,CPE(同相位误差)为0.903%rms。由于车车通信,可能存在直射路径,因此图4给出了信号经过信道3模型,即在单径莱斯分布的作用下,多普勒频移为1345Hz,路径损耗为-14.2dB,K因子为5.7时的测试结果,结果表明,此时EVM上升为-3.047dB,CPE上升为6.938%rms,说明在该种信道作用下,信号的接收质量显著下降。图5给出了信号经过信道7模型,即在单径瑞利衰落,多普勒频移为1522Hz,路径损耗为-27.9dB时的测试结果,此时,EVM为-16.791dB,CPE为5.542%rms。图6给出了信号经过信道11模型,即信号在单径瑞利衰落,多普勒频移为1562Hz,路径损耗为-27.9dB时的测试结果,图中EVM为-16.065dB,CPE为1.455%rms。比较图5和图6,说明了在类似的信道作用下,信号接收质量存在一定的随机性。另外,这两条路径的延时分别为400ns和700ns,在帧结构的保护时隙范围之内,因此可以通过均衡消除延时的影响。
3小结
本文搭建了面向DSRC应用的无线信道仿真和测试系统,介绍了系统的工作流程和测试方法,根据DSRC信道模型,给出4种典型信道的测试结果。本文工作为ITS系统设计提供了参考。
教育期刊网 http://www.jyqkw.com
参考文献
[1]王笑京,沈鸿飞,马林,等,编.中国智能交通系统发展战略[M]. 人民交通出版社, 2006
[2]H. D.Lee, M.G.Kim, C.H.Kim, S.Hong. A Temperature-Independent Transmitter IC for 5.8-GHz DSRC Applications[J].IEEE Transactions on Regular Papers: Circuits and Systems I, 2008 6(55):1733-1741.
[3]Roberto A.U.,Gulielmo A.M..Wave:a tutorial[J].IEEE Communications Magazine, 2009, 47:126-133.
[4]陈联连,孙玲.基于开关电容阵列的5.8GHz全集成LC压控振荡器设计[J].微电子学与计算机,2012,29(5):152-155.
[5]Intelligent Transportation Systems Committee. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE), 2007[S].
[6]IEEE P802.11p/D5.0, Nov. 2008,Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 7: Wireless Access in Vehicular Environments (WAVE)[S].
[7]IEEE Std.802.11-2007,Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications, IEEE Std. 802.11, 2007[S].(下转第27页)
(上接第26页)[8]金纯, 柳兴, 万宝红, 周晓军. IEEE 802.11p: 车载环境下的无线局域网[J]. 通信技术, 2009, 42(01): 323-325.
[9]范庆彬, 孙健淞, 牟红光.DSRC技术及其通信机制的研究[J].电信科学, 2010, 8:99-101.
[10]王昕, 徐展琦. DSRC协议及其在智能交通中的应用[J].通信技术,2006:189-190,193.
[责任编辑:曹明明]