导航菜单

海带表面降油细菌的分离鉴定及降油性能研究

郭伟成,李作扬,王斌,周文君,张凯,常安妮

(大连海洋大学,辽宁省高校海洋生物资源可持续利用重点实验室,辽宁 大连116023)

摘要:用柴油为唯一碳源的培养基选择分离海带表面具有降解柴油性能的细菌;对分离菌株进行了形态学、生理生化特性以及16SrDNA序列分析并测定其生长特性;测定了接菌不同浓度(7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL)分离菌对柴油的降解率;另外,测定了加入不同浓度葡萄糖(0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L)作用7 d后分离菌对柴油的降解率。结果显示:从海带表面分离到2株降油细菌,编号为:HD-4和HD-6。HD-4菌株菌落形态圆形、直径1.5 mm、黄色、不透明、边缘整齐,HD-6菌株菌落圆形,直径1.0 mm,浅黄色、透明、边缘整齐。两株菌均为革兰氏阴性短杆菌。生理生化特征和16SrDNA序列分析确定HD-4菌株为假交替单胞菌(Pseudoalteromonas sp.),其16SrDNA同源性为99%;HD-6菌株为交替单胞菌(Alteromonas_sp.),其16SrDNA同源性为98%。2株菌最适生长温度均为15 ℃。HD-4 和HD-6最适生长pH分别为9和8。适宜NaCl浓度分别为 2%和4%;在25 ℃振荡培养(150 r/min)7 d,接菌量为7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL 时,HD-4对柴油的初始降解率分别为8?0%,22.1%和27.6%;HD-6初始降解率分别为23.7%、38.8%和43?2%。加入葡萄糖后2株菌的降油率均有所增高,加入4 g/L葡萄糖时达最高值,3个接种浓度下HD-4菌株分别为85.4%、82.3%和80.4%,HD-6菌株分别为86.8%、93.7%和89.3%。当接菌量为7×107 cfu/mL,HD-4在葡萄糖含量为4 g/L 时作用7 d,降油率可达到最大值86.72%,HD-6菌株在葡萄糖浓度6 g/L达到最大值67.64%。葡萄糖浓度超过4 g/L和 6 g/L时HD-4和HD-6菌株的降油性能有所下降。

教育期刊网 http://www.jyqkw.com
关键词 :石油降解菌;海带;细菌鉴定;降油性

近年来,经济的高速发展使得对能源需求日益增加,而以化石能源为主的能源结构带来了海洋石油开采和海上石油运输行业的大规模发展,而在石油开采、运输过程中导致的海洋石油类污染随之成为世界性的问题。根据国际海事组织的统计,全球每年流入海洋的石油数以千万吨计[1],特别是在一些海湾,由于其独特的半封闭水域特征,溢油事故一旦发生就将会导致可怕的生态危机[2]。据联合国有关组织统计,每年由于海上油井井喷事故和油轮事故造成的溢油高达220万t[3]。如何治理和修复被石油污染的海洋环境及被其破坏的生态系统已经成为当下研究的热点。微生物修复是目前研究最多、应用也最为广泛的一种生物修复方法。国内外众多研究者对清除石油污染微生物的筛选鉴定、生长特性、菌株选育、降解原理、降解性能、影响因素等方面进行了大量研究[4-8]。目前有报道从耐受石油污染的小型藻类如蓝藻和大型藻类如江篱上筛选降解石油微生物进行研究。Radwan[9]等发现,大量的石油分解菌附着于多种大型海藻上, 这种藻菌共同作用对石油类污染物的降解有明显效果。本研究通过分离海带表面的附着微生物,并从中筛选出具有降油性能的菌株,为制备用于海洋石油污染修复的复合菌剂提供菌种,同时也为探索以海洋大型藻类为载体强化定植降油细菌用于海洋环境的石油污染修复奠定基础。

1实验材料与方法

1.1样品来源和培养基

海带样品采自大连黑石礁潮间带,菌株初筛选用2216E固体培养基,复筛选用柴油平板培养基,测量菌种柴油降解率选用基础无机盐培养基[4]。

柴油平板培养基:基础无机盐培养基 1000 mL、吐温80 1 mL、琼脂粉15 g、0号柴油10 mL (市售0号柴油,121 ℃高压灭菌后待用),pH 7?2,121 ℃高压灭菌20 min。

基础无机盐培养基:氯化铵 0.5 g、氯化钠 20 g、磷酸氢二钾 1 g、磷酸二氢钾 0.5 g、硫酸镁 0.5 g、氯化钾 0.1 g、硫酸铁 0.01 g、氯化钙 0.002 g、纯水 1 000 mL,pH 7.2,121 ℃高压灭菌20 min。

1.2降油细菌的分离和纯化

首先将刮取的海带表皮组织样品置于5 mL灭菌离心管中,加入2 mL无菌生理盐水并用匀浆器匀浆,对匀浆进行梯度稀释(10-1、10-2、10-3、10-4、10-5),各取稀释度为0.1 mL分别涂布于2216E平板上,置于25 ℃恒温培养箱培养24 h。根据菌落形态分别挑取单菌落于2216E平板进行纯化,每株菌分别纯化三代后将其保种于2216E斜面用于初筛降油菌株,同时接种2216E液体25 ℃培养24 h,加入50%(V/V)灭菌甘油置于-80 ℃保存。将分离纯化的菌株分别吸取10 μl点种到柴油平板中,25 ℃恒温培养箱培养48~72 h。待平板上长出较清晰菌苔,挑取生长状况良好的菌株作为目标菌株进行后续实验。

1.3菌落及菌体的形态学及生理生化鉴定

将纯化后并在柴油平板上生长良好的目标菌株分别在2216E平板上进行平板划线,置于25℃培养24 h后,观察菌落形态并挑取单菌落进行革兰氏染色镜检。按照《鱼类及其他水生动物细菌实用鉴定指南》 [10]和《常见细菌鉴定手册》[11]鉴定其生理生化特性。

1.416S rDNA 基因测序及序列的扩增

将待测菌株送至大连宝生物工程有限公司进行16SrDNA基因测序及扩增,将测序结果输入 GenBank数据库中,进行Blast(Basic local Alignment Search Tool)同源性比对。

1.5系统发育树的构建

利用Mega5.05软件,将所得16SrDNA序列,进行多序列比对同时计算序列间的系统进化距离,用邻接法(Neighbor-Joining method)构建系统发育树后,以自举数为1 000,通过自引导法(Bootstrap)进行置信度的检测。

1.6石油降解细菌的生长特性

1.6.1温度将目标菌株用2216E液体培养基活化24 h后,接种到5 mL 2216E液体培养基中,以不同的温度梯度( 5 ℃、10 ℃、15 ℃、20 ℃、25 ℃、30 ℃、35 ℃、40 ℃)培养24 h,每三个平行为一组。对照组为未接菌的培养基,以波长为600 nm,采用分光光度法测量实验组的吸光值(OD600nm)。以培养温度为横坐标,吸光值为纵坐标作图,得到不同温度条件下石油降解菌的生长特性。

1.6.2pH将目标菌株用2216E液体培养基活化24 h后,接种到5 mL 2%NaCl牛肉膏蛋白胨液体培养基中,以不同的pH梯度(pH=5、6、7、8、9、10,NaCl浓度2%)25 ℃培养24 h,每三个平行为一组。对照组为未接菌的培养基,以波长为600 nm,采用分光光度法测量实验组的吸光值(OD600nm)。以培养pH为横坐标,吸光值为纵坐标作图,得到不同pH条件下石油降解菌的生长特性。

1.6.3盐度将目标菌株用2216E液体培养基活化24 h后,接种到5 mL牛肉膏蛋白胨液体培养基中,以不同盐度(NaCl浓度分别为1%、2%、3%、4%、5%)25 ℃培养24 h,每组三个平行。每三个平行为一组。对照组为未接菌的培养基,以波长为600 nm,采用分光光度法测量实验组的吸光值(OD600nm)。以培养NaCl浓度为横坐标,吸光值为纵坐标作图,得到不同NaCl浓度条件下石油降解菌的生长特性。

1.7细菌降油性能测定

配置 MMC液体培养基,高压蒸汽灭菌锅中121 ℃,0.1MPa灭菌20 min。将在2216E斜面培养24 h处于对数生长期的菌斜面用无菌生理盐水洗脱,梯度稀释并用血球计数板计数,选择细菌数为7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL的梯度。

接种:分别将0.1 mL无菌柴油和1 mL浓度为7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL的菌悬液依次加入到 MMC培养基中,每种接菌量设置三组平行实验,以不接种菌液的培养基作为对照组。将接种好的三角烧瓶置于25 ℃,150 r/min恒温摇床培养7 d。

柴油降解率的测定:将摇好的锥形瓶水平平稳取出,分别加入适量无水硫酸钠,盖上棉塞,轻轻摇动使无水硫酸钠尽量溶解。吸取20 mL石油醚(透光率>90%,沸程60~90 ℃)加入三角瓶中,放回摇床摇10 min后取出锥形瓶,用移液枪吸取500 μL上层石油醚,加入到25 mL的比色管中,用石油醚定容至25 mL,充分混匀。在221 nm波长处通过紫外分光光度计测定各组吸光值。根据以下公式计算出降解率。降解率(D) =(A0-Ai)/A0×100%,其中D为柴油降解率,A0为空白对照组柴油吸光值,Ai为实验组剩余柴油吸光值。

1.8测定葡萄糖对石油降解菌降油率的影响

以葡萄糖终浓度为4 g/L的 MMC培养基,分别按3个浓度接种(7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL)两株实验菌,每种接菌量设置三组平行实验,不接种菌液的培养基作为对照组,将接种好的三角烧瓶置于25 ℃,150 r/min恒温摇床培养7 d。同法测定柴油降解率,比较不同接种量对柴油降解率的影响。

1.9不同葡萄糖浓度对石油降解菌降油率的影响

配制不同葡萄糖浓度(0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L)的柴油培养基,分别接种两株实验菌(107 cfu/mL),25 ℃、150 r/min恒温摇床分别培养7 d,测定柴油降解率。

2结果

2.1石油降解菌的初筛

经柴油平板初筛得到2株不同形态的细菌,分别编号为:HD-4、HD-6。两株菌可在以柴油为唯一碳源的培养基上生长。在2216E平板上25 ℃ 24 h后,HD-4菌落形态特征为圆形、偏黄、不透明、边缘整齐、?=1.5 mm,有运动能力。HD-6菌落形态特征为圆形、微黄,边缘整齐、无圆心、?=1.0 mm、有运动能力,培养24 h时菌落透明,48 h后菌落变得不透明。两株菌均为革兰氏阴性杆菌,见图1和图2。

2.2HD-4 和HD-6菌株生理生化特征

HD-4是假单胞菌属,革兰氏染色阴性无芽孢杆菌,呈杆状或略弯,菌体大小(0.5~1)×(1.5~4)μm。具端鞭毛,能运动,不发酵糖类。HD-6是交替单胞菌属:直或弯的杆状,(0.7~1.5) μm×(1.8~3.0) μm,不积累聚-β-羟基丁酸盐颗粒(PHB)作为胞内贮存物,不形成微胞囊和芽孢,细胞染色革兰氏阴性。大多数以单个无鞘和极生鞭毛运动,有带鞘的鞭毛。化能异养菌,能呼吸而不发酵的代谢型。精氨酸双水解酶阴性,所有的都耐盐生长,具体生理生化特征见表1。

2.316S rDNA序列及系统发育树

2.3.1基因序列同源性比对将纯化后得到的HD-4、HD-6菌株的单菌落移送至大连宝生物公司进行16S rDNA片段的扩增,对扩增得到的16S rDNA序列进行测序,将HD-4、HD-6菌株的16S rDNA序列测序结果与国际互联网NCBI上GenBank中数据进行BLAST比对,发现HD-4与Pseudoalteromonas sp. 同源性达到99%;HD-6菌株16SrDNA序列与Alteromonas sp.同源性98%。

2.3.2构建系统发育树序列的比对结果,利用Mega5.05软件进行多序列比对同时计算序列间的系统进化距离,构建的发育树得出:HD-4与Pseudoalteromonas sp. CF4-10聚为一支;HD-6与Alteromonas sp. HB1聚为一支,如图3。

2.4细菌生长特性的测定

图4-图6表明,HD-4和HD-6菌株最适生长温度分别为15 ℃和20 ℃,两菌株在10~30 ℃范围内能较好生长,说明两菌株能适应较大的温度范围且具有一定的耐低温能力。两株菌最适生长NaCl浓度分别为2%和4%;最适生长pH分别为9和8;且两菌株在NaCl浓度1%~5%、pH=5~9范围内,生长情况良好,说明两菌株生长能力较强,对于不同盐度、不同pH有一定的耐受性。

2.5HD-4和HD-6菌株原始降解率的测定

HD-4和HD-6菌株初始柴油降解率实验结果显示:随着接菌数量的增加,两株菌的降解率均呈现上升趋势,HD-4菌株接菌量为107 cfu/mL降解率只有8.0%;当接菌量达到108 cfu/mL和109 cfu/mL时降解率有所提升,分别达到22?1%和27.6%。HD-6菌株接菌量为107 cfu/mL降解率为23.7%,而接菌量为108 cfu/mL和109 cfu/mL时,其降解率分别达到了38?8%和43.2%,两株菌对柴油的降解率都与菌浓度正相关,且两株菌差异性计算结果均显示当接菌量为107 cfu/mL时,柴油降解率与108 cfu/mL、109 cfu/mL降解率差异显著(P<0.05),接菌量在108 cfu/mL 和109 cfu/mL时降解率差异不显著(P>0.05),详见图7。

2.6加入葡萄糖对柴油降解率的影响

在以柴油为唯一碳源的 MMC培养基中加入终浓度为4 g/L的葡萄糖后,不同接菌量实验组对柴油降解率都有大幅度提升,均达到80%以上,且接菌量为107cells/mL时HD-4菌株和HD-6菌株的柴油降解率分别可达到85.4%和86.8%,不同接菌量两株菌对柴油的降解率差异不显著(P>0.05)。而在终浓度为4 g/L的葡萄糖的条件下,相同接菌量两菌株的柴油降解率会因葡萄糖的增加而显著增大,差异极显著(P<0?01),且在菌浓度为107cells/mL时即可达到很高的降解率。详见图8-图9。

2.7不同浓度葡萄糖对菌株降油性能的影响

在接菌量为107 cfu/mL的条件下,添加不同浓度葡萄糖,HD-4和HD-6两株菌对柴油的降解率随着葡萄糖浓度的增加都呈现先增大后减小的趋势,HD-4在葡萄糖浓度为1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L时能保持较高的降解率,且在葡萄糖浓度为4 g/L时达到最大值86.72%;而HD-6在葡萄糖浓度为4 g/L、6 g/L、8 g/L、10 g/L浓度时对柴油的降解率才达到比较高的水平,在葡萄糖浓度为6 g/L时达到最大值67.64%,见图10。

3讨论

通过以柴油为唯一碳源的柴油平板培养基,初筛得到两株能利用柴油生长的菌株,编号为HD-4、 HD-6,经鉴定分别属于假交替单胞菌属和交替单胞菌属。两株菌均可耐盐生长,对柴油具有降解能力,其原始降解率与菌种接入量呈正相关。有关藻类附着微生物石油污染物的利用性研究目前有关报道较少,S.S. Radwan等2002年报道在阿拉伯湾海域的几种大型藻类(浒苔Enteromorpha、马尾藻Sargassum、石花菜Gelidium、江蓠Gracilaria等)表面附着多种可利用石油类物质的微生物,以放线菌(Actinomycetes)和不动杆菌(Acinetobacter)为主,其中约64%~98%可利用烷烃,约 38%~56%可利用芳香烃(菲)[12]。并且这些微生物是定植在藻类的表面,不易脱落,很可能与藻类属于共生关系。本研究分离的两株降油细菌是否为海带附着微生物中的优势种类,以及与海带的生态关系还需进一步深入研究。

HD-4和HD-6两株菌在添加葡萄糖后对柴油的降解率大大提高,在7 d内可达到80%以上,并且菌种的接入量对降解率影响不明显。葡萄糖为微生物代谢的初级能源,添加少量的初级能源物质,促进微生物对某些特殊物质的代谢称为“共代谢” [13],它具有缩短生物处理系统适应和繁殖期的优势[14]。微生物共代谢是时下研究较多的领域并具有较大的应用空间,在很多污染地方,如废污水治理、土壤修复等领域有着广泛应用,且对一些难降解的有机污染物,生物降解有其特殊优势[15-17]。有学者实验结果表明,当葡萄糖作为外加碳源加入土壤后,可以提高原土壤中有机碳的矿化速率[18],推测其机理可能正是由这种微生物共生作用增强了微生物的活性,增强了微生物的数量并且提高了其酶活力[19-20]。但是在测定添加不同浓度葡萄糖后两株菌的降油率实验中HD-6菌株的降解率较之前出现了下降的情况,分析原因考虑是否为转接过程中代谢能力受到一定影响。鉴于实验菌株的降油机理还不太清楚,其降解酶类的表达情况、影响因素等还需进行深入的研究。另外,本研究采用的两株菌在柴油利用过程中是否具有“共代谢”作用也是今后需要深入研究的问题,这对利用这两株菌进行石油污染海域或其他环境的生物修复具有重要的意义。

教育期刊网 http://www.jyqkw.com
参考文献:

[1] 支振锋.油轮泄漏与海洋生物灾难[J].新安全,2004(6):60-64

[2] 陈锋,陈伟琪,王萱.溢油事故造成的海湾生态系统服务损失的货币化评估[J].环境科学与管理.2009,34(11):1-5

[3] United Nations Environment Programme.Keeping Track of Our Changing Environment: From Rio to Rio+20 (1992-2012)[R].Nairobi:United Nations Environment Programme,2011:49

[4] 郑金秀,张甲耀,赵晴,等.高效石油降解菌的选育及其降解特性研究[J].环境科学与技术,2006,29(3):1-2,40

[5] 吴业辉,邵宗泽.海洋烷烃降解菌Alcanivorax sp.A-11-3的分离鉴定及其降解酶基因研究[J].台湾海峡,2008,27(4):427-434

[6] 谭田丰,邵宗泽.海洋石油烃降解菌群构建及其在降解过程中的动态分析[J].厦门大学学报(自然科学版),2006,45(增刊):427-434

[7] 贾燕,尹华,彭辉,等.石油降解菌株的筛选、初步鉴定及其特性[J].暨南大学学报(自然科学版),2007,28(3):296-301

[8] 徐冯楠,冯贵颖,马雯,等.高效石油降解菌的筛选及其降解性能研究[J].生物技术通报,2010(7):221-226

[9] RadwanSS,Hasan R H,Alamah S S,et al.Bioremediation of oily sea water by bacteria immobilized in biofilmscoating macroalgae[J].International Biodeterioration & Biodegradation,2002,50(1):55-59

[10] Nicky B. Buller. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual [M].

[11] 东秀珠, 蔡妙英,等. 常见细菌系统鉴定手册[M].北京:科学出版社,2001

[12] RadwanSS, Al-Hasan R H,Khanafer M,Eliyas M,et al.Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf[J].Journal of Applied Microbiology,2001,191:533-540

[13] Jensen, H. L. Carbon nutrition of some microganisms decomposting halogen-substituted aliphatic acid. Acta. Agr. Scand., 1963, 13: 404-412

[14] ANGELA V, GUIDO D M, SIMON A R, et al. Enhanced bioremediation of methyl tert-butyl ether (MTBE) by microbial consortia obtained from conta minated aquifer material[J]. Chemosphere, 2009, 75:149–155

[15] YIN Z, TIANGANG L, XIAOWEI W, et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4 [J]. Applied Microbiology and Biotechnology, 2007, 75:175–186

[16] 巩宗强, 李培军, 王新,等. 芘在土壤中的共代谢降解研究[J]. 应用生态学报, 2001,12(3): 447–450

[17] 李萍, 刘俊新. 废水中难降解性有机污染物的共代谢降解[J]. 环境污染治理技术与设备, 2002,11(3):43–46

[18] SHEN J, BARTHA R. The pri ming effect of substrate addition in soil–based biodegradation tests[J]. Applied and Environmental Microbiology, 1996, 62: 1428–1430.

[19] 陈春梅, 谢祖彬, 朱建国. 土壤有机碳激发效应研究进展[J].土壤(Soils), 2006, 38(4):359-36

[20] Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil science Society of American Proceedings, 1953, 17:34–38

下载文本