——以秦皇岛为例
文/ 齐海云 耿世刚
当前,以全球变暖为主要特征的气候变化已成为世界各国共同面临的严重危机和挑战。政府间气候变化专门委员会(IPCC)发布的《气候变化2007综合报告》中,明确将消费后废弃物(postconsumerwaste)作为一个独立对象来计算其温室气体排放量。废弃物的处理方式有卫生填埋、焚烧、堆肥等多种,本文采用《省级温室气体清单编制指南(试行)》中的计算方法,对卫生填埋和焚烧两种处理方式下温室气体的排放情况进行计算并展开比较分析,以期为城市生活垃圾处理温室气体减排提供科学依据。
一、概述
城市生活垃圾处理是通过使生活垃圾中的可降解有机成分分解、可回收成分回收利用、惰性成分永久存放或埋藏等途径,使其达到无害化、减量化和资源化。
在城市生活垃圾填埋过程中,垃圾中的有机物将会发生生物分解,产生大量垃圾填埋气体,主要成分为甲烷、二氧化碳。甲烷所产生的温室效应是当量体积二氧化碳的21倍,属于《京都议定书》中规定要减排的六大温室气体之一。垃圾填埋气中含有的部分二氧化碳,最初来源为生物质,从碳平衡的角度来看,整个过程为零碳排放,不计入温室气体产生量的计算当中。
以焚烧方式处置城市生活垃圾具有占地面积小、 焚烧产物稳定、 消灭病原菌和回收热能等优点,在国内外的应用日趋广泛。生活垃圾在焚烧的过程中会产生温室气体二氧化碳。由于垃圾中动物、植物、厨余、纸等垃圾所含碳的最初来源为生物质,因此,从碳平衡的角度来看,整个过程为零碳排放,不计入温室气体产生量计算。只计算矿物碳产生的温室气体排放。
二、温室气体排放量计算方法
1、数据来源
本文所用秦皇岛相关数据来源于2011年、2013年《秦皇岛市统计年鉴》及秦皇岛市城建部门统计资料。
2、计算方法
本文采用《省级温室气体清单编制指南(试行)》中填埋处理甲烷排放量和焚烧处理二氧化碳排放量计算方法。
城市生活垃圾卫生填埋温室气体排放量计算方法如下:
ECH4=(MSWTXMSWFXL0-R)X(1-OX)式中:ECH4指甲烷排放量(万吨/年);MSWT指总的城市固体废弃物产生量(万吨/年);MSWF指城市固体废弃物填埋处理率;L0指各管理类型垃圾填埋场的甲烷产生潜力(万吨甲烷/万吨废弃物);R指甲烷回收量(万吨/年);OX指氧化因子。
其中:L0 =MCFXDOCXDOCFXFX16/12。
式中:MCF指各管理类型垃圾填埋场的甲烷修正因子(比例);DOC指可降解有机碳(千克碳/千克废弃物);
DOCF指可分解的DOC比例;F指垃圾填埋气体中的甲烷比例;16/12 指甲烷/碳分子量比率。
城市生活垃圾焚烧处理二氧化碳排放量计算方法如下:
ECO2=IWXCCWXFCFXEFX44/12
式中:ECO2指废弃物焚烧处理的二氧化碳排放量(万吨/年);IW指生活垃圾的焚烧量(万吨/年);CCW 指生活垃圾中的碳含量比例;FCF指生活垃圾中矿物碳在碳总量中比例;EF指生活垃圾焚烧炉的燃烧效率;44/12指碳转换成二氧化碳的转换系数。
3、排放因子的确定
本文排放因子多数采用《省级温室气体清单编制指南(试行)》中的推荐值,MCF、DOC、R根据秦皇岛市实际计算数值。秦皇岛市温室气体排放因子见表1、表 2。
三、计算结果
1、城市生活垃圾焚烧二氧化碳排放量2010年底以后,秦皇岛市的生活垃圾焚烧发电厂启动,所以2012年秦皇岛市区的城市生活垃圾全部转入该生活垃圾焚烧发电厂进行焚烧处理。根据前述计算方法及排放因子,计算得2012年,秦皇岛市区城市生活垃圾焚烧处理产生的二氧化碳排放量为6.77万吨。
2、城市生活垃圾填埋处理甲烷排放量2010年底之前,秦皇岛市的城市生活垃圾均送至生活垃圾卫生填埋场进行填埋处理。2012年的城市生活垃圾如果仍然采用填埋处理的方法,计算产生的甲烷排放量为0.90万吨,折算成二氧化碳当量为18.9万吨。
四、结论
从以上数据来看,城市生活垃圾焚烧产生的温室气体量显著少于填埋处理产生的温室气体。当然,由于目前我国城市生活垃圾的热值较低,在焚烧垃圾时往往需要加入煤、重油、天然气等化石类辅助燃料,这些燃料在燃烧时也会产生温室气体二氧化碳,但是应该看到的是,垃圾焚烧发电并入电网,可以减少燃煤发电量,实际仍然是减少了温室气体排放量。本文暂不涉及两种方式的温室气体减排量,仅从两种处理方式的直接温室气体排放数据开展分析,可得出城市生活垃圾焚烧处理在回收大量能源、实现垃圾处理“无害化、减量化、资源化”的同时,也确实减少了温室气体的排放。(本文系河北省高等学校科学技术研究指导项目“河北省清洁发展机制(CDM)项目开发战略研究”的研究成果之一)
作者单位:中国环境管理干部学院